3 research outputs found

    A Multi-Site NFV Testbed for Experimentation With SUAV-Based 5G Vertical Services

    Get PDF
    [EN] With the advent of 5G technologies, vertical markets have been placed at the forefront, as fundamental drivers and adopters of technical developments and new business models. Small Unmanned Aerial Vehicles (SUAVs) are gaining traction in multiple vertical sectors, as key assets to generate, process, and distribute relevant information for the provision of value-added services. However, the enormous potential of SUAVs to support a exible, rapid, and cost-effective deployment of vertical applications is still to be exploited. In this paper, we leverage our prior work on Network Functions Virtualization (NFV) and SUAVs to design and build a multi-site experimentation testbed based on open-source technologies. The goal of this testbed is to explore synergies among NFV, SUAVs, and vertical services, following a practical approach primarily governed by experimentation. To verify our testbed design, we realized a reference use case where a number of SUAVs, cloud infrastructures, and communication protocols are used to provide a multi-site vertical service. Our experimentation results suggest the potential of NFV and SUAVs to exibly support vertical services. The lessons learned have served to identify missing elements in our NFV platform, as well as challenging aspects for potential improvement. These include the development of speci c mechanisms to limit processing load and delays of service deployment operations.This work was supported in part by the European Commission under the European Union's Horizon 2020 program (5GRANGE Project, grant agreement number 777137), and in part by the 5GCity Project funded by the Spanish Ministry of Economy and Competitiveness under Grant TEC2016-76795-C6-1R, Grant TEC2016-76795-C6-3R, and Grant TEC2016-76795-C6-5R

    Energy-aware management in multi-UAV deployments: modelling and strategies

    Get PDF
    Nowadays, Unmanned Aerial Vehicles (UAV) are frequently present in the civilian environment. However, proper implementations of different solutions based on these aircraft still face important challenges. This article deals with multi-UAV systems, forming aerial networks, mainly employed to provide Internet connectivity and different network services to ground users. However, the mission duration (hours) is longer than the limited UAVs’ battery life-time (minutes). This paper introduces the UAV replacement procedure as a way to guarantee ground users’ connectivity over time. This article also formulates the practical UAV replacements problem in moderately large multi-UAV swarms and proves it to be an NP-hard problem in which an optimal solution has exponential complexity. In this regard, the main objective of this article is to evaluate the suitability of heuristic approaches for different scenarios. This paper proposes betweenness centrality heuristic algorithm (BETA), a graph theory-based heuristic algorithm. BETA not only generates solutions close to the optimal (even with 99% similarity to the exact result) but also improves two ground-truth solutions, especially in low-resource scenarios.Peer ReviewedPostprint (published version

    An NFV-based energy scheduling algorithm for a 5G enabled fleet of programmable unmanned aerial vehicles

    No full text
    The fifth generation of mobile networks (5G) is expected to provide diverse and stringent improvements such as greater connectivity, bandwidth, throughput, availability, improved coverage, and lower latency. Considering this, drones or Unmanned Aerial Vehicles (UAVs) and Internet of Things (IoT) devices are perfect examples of existing technology that can take advantage of the capabilities provided by 5G technology. In particular, UAVs are expected to be an important component of 5G networks implementations and support different communication requirements and applications. UAVs working together with 5G can potentially facilitate the deployment of standalone or complementary communications infrastructures, and, due to its rapid deployment, these solutions are suitable candidates to provide network services in emergency scenarios, natural disasters, and search and rescue missions. An important consideration in the deployment of a programmable drone fleet is to guarantee the reliability and performance of the services through consistent monitoring, control, and management scheme. In this regard, the Network Functions Virtualization (NFV) paradigm, a key technology within the 5G ecosystem, can be used to perform automation, management, and orchestration tasks. In addition, to ensure the coordination and reliability in the communications systems, considering that the UAVs have a finite lifetime and that eventually they must be replaced, a scheduling scheme is needed to guarantee the availability of services and efficient resource utilization. To this end, in this paper is presented an UAV scheduling scheme which leverages the potential offered by NFV. The proposed strategy, based on a brute-force search combinatorial algorithm, allows obtaining the optimal scheduling of UAVs in time, in order to efficiently deploy network services. Simulation results validate the performance of the proposed strategy, by providing the number of drones needed to meet certain levels of service availability. Furthermore, the strategy allows knowing the sequence of replacement of UAVs to ensure the optimal resource utilization.Peer Reviewe
    corecore